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• Long controversy in the physical literature: Itô versus Stratonovich.

• Itô’s theory to prove Stratonovich’s ideas.

• Wong-Zakai’s theorem for SDEs.

• Analogous results in the case of SPDEs.

• Physical relevance of Itô’s correction in physics: 
- wave propagation in random media,

- renormalization in quantum field theory.
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Itô versus Stratonovich in SDEs

• When white noise is approximated by a smooth process this often leads to

Stratonovich interpretations of stochastic integrals, at least in one dimension.

• Toy model:

dXε

dt
= f(Xε)Y ε

,

dY
ε = − 1

ε2
Y

ε
dt+

1

ε2
dB.

Y ε(t) looks like a white noise: Y ε Gaussian, E[Y ε(t)] = 0, and

E[Y ε(t)Y ε(t′)] = 1

2ε2
exp(− |t−t′|

ε2
) → δ(t− t′), so the conjecture is:

Y ε → dW
dt

and Xε → X (in dist.) with

dX

dt
= f(X)

dW

dt
.

In fact, Itô’s calculus shows that

dX = f(X)dW +
1

2
f
′(X)f(X)dt,

which means

dX = f(X) ◦ dW.
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Itô versus Stratonovich in SDEs

• Wong-Zakai: under fairly general circumstances,

- if W ε denotes some “natural” smooth ε-approximation to a Brownian motion W ,

- if Xε denotes the solution to the ODE

dXε

dt
= h(Xε) + g(Xε)

dW ε

dt
,

then Xε → X (in dist.), the solution to the SDE

dX = h(X)dt+ g(X) ◦ dW,

where ◦dW denotes Stratonovich integration against W .

It makes sense in the form

dX = h(X)dt+ g(X)dW +
1

2
g
′(X)g(X)dt.

→֒ This result gives the right model for physical applications.
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Itô versus Stratonovich in SDEs

Beyond one-dimensional:

• Toy model (Langevin equation):

m
d2Xε

dt2
= f(Xε)Y ε − dXε

dt
,

dY
ε = − 1

ε2
Y

ε
dt+

1

ε2
dB.

The conjecture is: Y ε → dW
dt

and Xε → X with

m
d2X

dt2
= f(X)

dW

dt
− dX

dt
.

Itô’s calculus shows that this is correct:

dX = X
′
dt,

mdX
′ = f(X)dW −X

′
dt.

Moreover X is smooth and the Itô and Stratonovich integrals coincide.
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Itô versus Stratonovich in SDEs

Beyond one-dimensional:

• Toy model:

m0ε
2 d

2Xε

dt2
= f(Xε)Y ε − dXε

dt
,

dY
ε = − 1

ε2
Y

ε
dt+

1

ε2
dB.

The conjecture is: Y ε → dW
dt

and Xε → X with

dX

dt
= f(X)

dW

dt
.

In fact, Itô’s calculus shows that

dX = f(X)dW +
1

2(1 +m0)
f
′(X)f(X)dt.

The integral is nor Itô (correction= 0) neither Stratonovich

(correction= 1

2
f ′(X)f(X)dt).

Remark:

If m0ε
2 → m0ε, then Itô.

If m0ε
2 → m0ε

3, or m0ε
4, or . . ., then Stratonovich.
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Itô versus Stratonovich in SDEs

Beyond one-dimensional: Smooth approximation to white noise in one dimension

leads to the Stratonovich stochastic integral.

This is not true in general, however, in the multidimensional case: an additional drift

can appear in the limit.

• Toy model:

dXε
1

dt
= Y

ε
1 ,

dXε
2

dt
= Y

ε
2 ,

dXε
3

dt
= (Xε

1Y
ε
2 −X

ε
2Y

ε
1 ),

dY
ε
1 = − 1

ε2
Y

ε
1 dt−

α

ε2
Y

ε
2 dt+

1

ε2
dB1,

dY
ε
2 = − 1

ε2
Y

ε
2 dt+

α

ε2
Y

ε
1 dt+

1

ε2
dB2.
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Itô versus Stratonovich in SDEs

We conjecture





Y ε
1

Y ε
2



 →





1 α

−α 1





−1




dW1

dt

dW2

dt



 =
1

1 + α2





dW1

dt
− α dW2

dt

α dW1

dt
+ dW2

dt





and (Xε
1 , X

ε
2 , X

ε
3) → (X1, X2, X3) with

dX1

dt
=

1

1 + α2

(dW1

dt
− α

dW2

dt

)

,

dX2

dt
=

1

1 + α2

(dW2

dt
+ α

dW1

dt

)

,

dX3

dt
=

1

1 + α2

(

(αX1 −X2)
dW1

dt
+ (αX2 +X1)

dW2

dt

)

.

Itô and Stratonovich coincide. However the result is wrong!
Correct answer:

dX3 =
1

1 + α2

(

(αX1 −X2)dW1 + (αX2 −X1) dW2

)

+
α

1 + α2
dt.

The drift correction is related to the Lévy area of the driving processes and the Lie

brackets between the row vectors of the diffusion matrix.
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Itô versus Stratonovich in SDEs

In dimension d, with r approximations of Brownian motions W ε
n [Ikeda and

Watanabe, 1989]:

dXε
i

dt
=

r
∑

n=1

σin(X
ε)
dW ε

n

dt
+ bi(X

ε)

↓

dXi =

r
∑

n=1

σin(X)dWn + bi(X)dt+
1

2

r
∑

n,m=1

d
∑

q=1

(

cnm + snm

)

σqn(X)∂xq
σim(X)dt

with the symmetric (Itô-Stratonovich) correction

cnm = δnm

and the antisymmetric (Lévy) correction

snm = lim
ε→0

1

ε2
E

[

∫ ε2

0

(

W
ε
n

dW ε
m

dt
−W

ε
m

dW ε
n

dt

)

dt
]

See also [Fouque et al, 2007] for weak convergence results.
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Itô versus Stratonovich - Extension to SPDEs - part I

• How to make sense of a stochastic PDE driven by noise dW
dt

white in time and

colored in space of the type

du = ∂
2

xudt+H(u)dt+G(u)dW.

We can use martingale theory and Itô’s calculus for Hilbert-space valued processes to

make sense of this equation.

• Example: Itô-Schrödinger equation [Dawson and Papanicolaou, 1984]:

idu = ∂
2

xudt+ u ◦ dW,

where E[W (t, x)W (t′, x′)] = min(t, t′) γ(x− x′).
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Itô versus Stratonovich - Extension to SPDEs - part I

• How to make sense of a stochastic PDE driven by noise dW
dt

white in time and

colored in space of the type

du = ∂
2

xudt+H(u)dt+G(u)dW.

We can use martingale theory and Itô’s calculus for Hilbert-space valued processes to

make sense of this equation.

• Example: Itô-Schrödinger equation [Dawson and Papanicolaou, 1984]:

idu = ∂
2

xudt+ udW − 1

2
γ(0)udt,

where E[W (t, x)W (t′, x′)] = min(t, t′) γ(x− x′).
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Wave propagation in random media

∆~xû(~x) +
ω2

c2(~x)
û(~x) = f(~x).

Denote ~x = (x, z) ∈ R
2 × R.

• Randomly layered medium model:

1

c2(~x)
=

1

c2
0

(

1 + µ(z)
)

c0 is a reference speed,

µ(z) is a zero-mean random process.

• Isotropic random medium model:

1

c2(~x)
=

1

c2
0

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = δ(z)f(x).

Consider the paraxial regime:

ω → ω

ε4
, µ(x, z) → ε

3
µ
( x

ε2
,
z

ε2

)

, f(x) → f
( x

ε2

)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

û
ε(ω,x, z) = ε

4
e
i ωz

ε4c0 φ̂
ε
(

ω,
x

ε2
, z
)

satisfies

ε
4
∂
2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2

)

φ̂
ε

)

= δ(z)f(x).

Conference Itô November 2015



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = δ(z)f(x).

Consider the paraxial regime:

ω → ω

ε4
, µ(x, z) → ε

3
µ
( x

ε2
,
z

ε2

)

, f(x) → f
( x

ε2

)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

û
ε(ω,x, z) = ε

4
e
i ωz

ε4c0 φ̂
ε
(

ω,
x

ε2
, z
)

satisfies

ε
4
∂
2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2

)

φ̂
ε

)

= δ(z)f(x).

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid and

φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0

2ω
∆⊥φ̂dz +

iω

2c0
φ̂ ◦ dB(x, z),

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz, and initial conditions: φ̂(ω,x, z = 0) = ic0

2ω
f(x).

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2

z +∆⊥)û+
ω2

c2
0

(

1 + µ(x, z)
)

û = δ(z)f(x).

Consider the paraxial regime:

ω → ω

ε4
, µ(x, z) → ε

3
µ
( x

ε2
,
z

ε2

)

, f(x) → f
( x

ε2

)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

û
ε(ω,x, z) = ε

4
e
i ωz

ε4c0 φ̂
ε
(

ω,
x

ε2
, z
)

satisfies

ε
4
∂
2

z φ̂
ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c2
0

1

ε
µ
(

x,
z

ε2

)

φ̂
ε

)

= δ(z)f(x).

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid and

φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0

2ω
∆⊥φ̂dz +

iω

2c0
φ̂dB(x, z)− ω2γ(0)

8c2
0

φ̂dz,

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz, and initial conditions: φ̂(ω,x, z = 0) = ic0

2ω
f(x).

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the solution φ̂
(

ω,x, z
)

:

dφ̂ =
ic0

2ω
∆⊥φ̂dz +

iω

2c0
φ̂ ◦ dB(x, z).

• By Itô’s formula, the coherent wave (=mean field) satisfies

∂zE[φ̂] =
ic0

2ω
∆⊥E[φ̂]−

ω2γ(0)

8c2
0

E[φ̂].

Therefore

E
[

φ̂
(

ω,x, z
)]

= φ̂homo

(

ω,x, z
)

exp
(

− γ(0)ω2z

8c2
0

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

• Exponential damping of the coherent wave.

The wave becomes incoherent.

=⇒ Identification of the scattering mean free path as the Itô-Stratonovich correction.
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Wave propagation in the random paraxial regime

Consider the solution φ̂
(

ω,x, z
)

:

dφ̂ =
ic0

2ω
∆⊥φ̂dz +

iω

2c0
φ̂ ◦ dB(x, z).

• By Itô’s formula, the second-order moment

M
(

ω,x,y, z
)

= E

[

φ̂(ω,x, z)φ̂(ω,y, z)
]

satisfies

∂zM =
ic0

2ω

(

∆x −∆y

)

M − ω2

4c2
0

(

γ(0)− γ(x− y)
)

M.

Equivalently the Wigner transform

W (ω,x,κ, z) =

∫

R2

exp(−iκ · y)E
[

φ̂
(

ω,x+
y

2
, z
)

φ̂
(

ω,x− y

2
, z
)

]

dy

satisfies the radiative transport equation

∂zW +
c0

ω
κ · ∇xW =

ω2

16π2c2
0

∫

γ̂(κ′)
(

W (κ− κ
′)−W (κ)

)

dκ
′
.

The fields at nearby points are correlated.

=⇒ The coherent field vanishes, the wave fluctuations carry information.
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Wave propagation in the random paraxial regime

• In a random medium, by Itô’s formula, one can write a closed-form equation for the

n-th order moment.

Depending on the statistics of the random medium, the wave fluctuations may have

Gaussian statistics or not.

The wave fluctuations may have Gaussian statistics (scintillation regime) or not

(spot-dancing regime) [1].

[1] J. Garnier and K. Sølna, Comm. Part. Differ. Equat. 39, 626 (2014).



Itô versus Stratonovich - Extension to SPDEs - part II

• How to make sense of a stochastic PDE driven by space-time white noise dW
dt

(W is

a L2-valued cylindrical Wiener process) of the type

du = ∂
2

xudt+H(u)dt+G(u)dW ?

• If it comes from a smooth ε-approximation of the white noise, one would expect a

Stratonovich formulation.

No Stratonovich formulation for such an equation since the Itô-Stratonovich

correction would be infinite.

It would be given by 1

2
G′(u)G(u)Tr(Γ)dt where min(t, t′) Γ is the covariance operator

of W . In the case of space-time white noise, Γ is the identity operator on L2, which is

not trace class.
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Renormalization for SDEs

• Remark to Wong-Zakai for SDE: If one subtracts a suitable correction term from the

random ODE, then it is possible to ensure that solutions converge to the Itô solution.

More precisely, if one considers

dXε

dt
= h(Xε) + g(Xε)Y ε − 1

2
g
′(Xε)g(Xε),

dY
ε = − 1

ε2
Y

ε
dt+

1

ε2
dB,

then Xε → X, the solution to the SDE

dX = h(X)dt+ g(X)dW.

→֒ Renormalization.
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Renormalization and regularization for SPDEs

• Since the Itô solution is the only “natural” notion of solution available for

du = ∂
2

xudt+H(u)dt+G(u)dW,

for dW
dt

a space-time white noise, this suggests that if one considers approximations of

the type

∂tu
ε = ∂

2

xu
ε +H(uε)− CεG

′(uε)G(uε) +G(uε)ξε,

where ξε is an ε-approximation to space-time white noise and Cε is a suitable

constant which diverges as ε → 0, then one might expect uε to converge to the

solution u of the SPDE, interpreted in the Itô sense.

• Almost true.

[Hairer and Pardoux, 2012] For ρ : R2 → R with
∫∫

ρ(s, y)dsdy = 1, consider the

ε-approximation to space-time white noise:

ξ
ε(t, x) = ε

−3

∫

〈

ρ
(

ε
−2(t− s), ε−1(x− ·)

)

dW (s, ·)
〉

.

There exist c0, c1, c2 (depending on the regularization) such that, for Cε = c0ε
−1, we

have uε → u where u solution of

du = ∂
2

xudt+
[

H(u) + c1G
′
G

3(u) + c2G
′′
G

′
G

2(u)
]

dt+G(u)dW.
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Renormalization and regularization for SPDEs

• Result:

∂tu
ε = ∂

2

xu
ε +H(uε)− c0ε

−1
G

′(uε)G(uε) +G(uε)ξε

↓

du = ∂
2

xudt+
[

H(u) + c1G
′
G

3(u) + c2G
′′
G

′
G

2(u)
]

dt+G(u)dW.

• The higher-order Itô-Stratonovich corrections involve higher powers and higher

derivatives of the diffusion (volatility) term.

• Higher-order corrections were already studied for finite-dimensional systems.

→֒ Corrections to Black-Scholes formula in the presence of rapidly varying stochastic

volatility [Fouque et al., Derivatives in Financial Markets with Stochastic Volatility,

2000]
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Renormalization and regularization for SPDEs

• Result:

∂tu
ε = ∂

2

xu
ε +H(uε)− c0ε

−1
G

′(uε)G(uε) +G(uε)ξε

↓

du = ∂
2

xudt+
[

H(u) + c1G
′
G

3(u) + c2G
′′
G

′
G

2(u)
]

dt+G(u)dW.

• Conjecture (?):

∂tu
ε = ∂2

xu
ε +H(uε)− c0G

′(uε)G(uε) +
√
εG(uε)ξε

↓
∂tu = ∂2

xu+H(u),

or equivalently

∂tu
ε = ∂2

xu
ε +H(uε) +

√
εG(uε)ξε

↓
∂tu = ∂2

xu+H(u) + c0G
′(u)G(u).
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Application to Allen-Cahn equation

• Consider

dΦ = ∆Φdt+ (Φ− Φ3)dt+ σdW, t > 0, x ∈ T
2
,

gradient flow of the Ginzburg-Landau free energy, in a double-well potential.

Here dW
dt

is an additive space-time white noise that models thermal fluctuations.

• Question/conjecture: For any σ > 0, the solution u is zero at t > 0 ?

• Regularization + renormalization: Consider additive noise white in time and

colored in space

W
ε(t,x) = ε

−2
〈

ρ
(

ε
−1(x− ·)

)

,W (t, ·)
〉

and

dΦε = ∆Φε
dt+ (Φε − Φε3)dt+ σ

ε
dW

ε
.

[Hairer, Ryzer, and Weber, 2012] If σε| log ε| → λ2, then Φε → Φ solution of

∂tΦ = ∆Φ+ (Φ− Φ3)− 3

8π
λ
2Φ.
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Conclusions

• Itô-Stratonovich correction has physical meaning.

• Only a few results available for SPDEs (recent progress by Lyons’ theory on rough 
paths and Hairer’s theory on regularity structures).

• A lot of open questions:
• Hyperbolic or dispersive problems?

• Non-Gaussian noise?
• Universal regularity structure?
• Systematic way of choosing renormalization procedure?
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